
@JinaAI_jina.ai

DSPy:
Not Your Average Prompt
Engineering

hello@jina.ai



OUR MISSION

Jina AI provides the search foundation (SF), a new
frontier in neural information retrieval. 

SF includes embeddings, rerankers, prompt
optimizers, and core infra. They work in concert to
revolutionize how we utilize data.



OUR EXCELLENCE

OUR INVESTORS OUR PARTNERS

1,000+
DEVELOPERS EMPOWERED

400,000+
TOTAL USERS REGISTERED

2020
FOUNDED IN

38
EMPLOYEES

30+
OPENSOURCE PROJECTS

BERLIN
OUR HQ



Embeddings are the cornerstones of modern search system, representing
multimodal data into vectors of numbers. This process enables a more nuanced
and contextual understanding of content, far beyond simple keyword matching.

Rerankers take the initial results from the embeddings and refine them, ensuring
that the most relevant results are presented to the user. This is crucial for
delivering high-quality search results that meet the user's intent.

Prompt optimizers enhance the input and output of the search system,
including those used in queries expansion and results rewriting. This ensures that
the the search understands better and results better.

Core infra provides a cloud-native layer for developing, deploying and
orchestration search foundation models both in the public cloud and on-
premises, enabling services to scale up and down effortlessly.

WHAT IS SEARCH FOUNDATION 



Higher Engagement and Conversion Rates

Improved User Satisfaction and Trust

HOW SF WORKS
DATA PROCESSING WITH EMBEDDINGS

Embeddings transform multimodal data into a
uniform, vectorized format, making diverse content
searchable on equal footing. This process enables
the search system to understand and categorize
content beyond simple keyword.

SEARCH PRECISION WITH RERANKERS

Rerankers adjust initial search results based on deep
contextual relevance, pushing the most applicable
results to the top. This adjustment refines the ranking
to better match what users are likely to find useful.

PROMPT OPTIMIZATION

Prompt optimizers elevate search experiences by
refining queries and results through LLMs. They
enhance final results' relevance and presentation,
aligning closely with user intents.

Increased Relevance & Reduced Search Time

Direct Increase in Sales Volume

New Applications to Unlock Business Growth



@JinaAI_jina.ai

What is Prompt Engineering?

hello@jina.ai

DSPy:
Not Your Average Prompt Engineering



PROMPT ENGINEERING

Prompt Engineering, also known as In-
Context Prompting or In-Context Learning.

It refers to methods for how to
communicate with LLM to steer its
behavior for desired outcomes without
updating the model weights.

It is the non-parametric counterpart of
model fine-tuning.



PROMPT ENGINEERING

Question in early 2023, “will prompt engineering become obsolete
as LLMs keep evolving?”

Today:
No.
It is even more important than before; and more popular than
model fine-tuning.
20% of EMNLP’23 publications are about prompt engineering.
Popularity of string templates library: LangChain, LlamaIndex.



WHY DONT YOU LIKE PROMPT ENGINEERING

It is simple, effective and cost-efficient.

Most tricks can be explained in one or few-sentences, instead of 8-page

Take you 5 mins to validate the effectiveness via LLM UI/API

At almost no cost on GPU

It is brittle and lacks of a systematic way to improve it. 



PROMPT ENGINEERING - THE URLY PARTS

Cheesy, anthropomorphic:
“My grandma is dying”
“I will tip you $50 if you can get it right”
“But ChatGPT can do it”

A lot of tricks, requiring heavy experimentation and heuristics.
Results can not be universally applied to all LLMs/VLMs, or even
to the different versions of the same LLMs (gpt3->3.5->4)

The loop is not closed: easy to start but hard to iterate.



@JinaAI_jina.ai

Basic Prompt Engineering
Modules

hello@jina.ai

DSPy:
Not Your Average Prompt Engineering



ZERO-SHOT

Test data LLM Result



Test data LLM Result

FEW-SHOT

Training data



Test data LLM Result

FEW-SHOT

Training data

Presents a set of high-quality demonstrations, each consisting
of both input and desired output, on the target task.
Performance is influenced by

Training examples, and the order of the examples
Example string template



Test data LLM Result

FEW-SHOT BIASES

Training data

Majority label bias exists if distribution of labels
among the examples is unbalanced; 
Recency bias refers to the tendency where the model
may repeat the label at the end; 
Common token bias indicates that LLM tends to
produce common tokens more often than rare tokens. 



Test data LLM Result

FEW-SHOT BIASES

Training data

Majority label bias exists if distribution of labels
among the examples is unbalanced; 
Recency bias refers to the tendency where the
model may repeat the label at the end; 
Common token bias indicates that LLM tends to
produce common tokens more often than rare
tokens. 

Over-sampling

Data shuffling

Paraphrasing

In classic ML 



FEW-SHOT SELECTION
Liu et al., (2021) choose examples that are semantically similar to the test example
using k-NN clustering in the embedding space.
Su et al. (2022) proposed to use a graph-based approach.
Rubin et al. (2022) proposed to train embeddings via contrastive learning specific to
one training dataset for in-context learning sample selection.
Zhang et al. (2022) tried Q-Learning to do sample selection. 
Diao et al. (2023) suggested to identify examples with high disagreement or entropy
among multiple sampling trials. Then annotate these examples to be used in few-
shot prompts.

https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2209.01975
https://arxiv.org/abs/2112.08633
https://lilianweng.github.io/posts/2021-05-31-contrastive/
https://arxiv.org/abs/2211.04486
https://lilianweng.github.io/posts/2018-02-19-rl-overview/#q-learning-off-policy-td-control
https://arxiv.org/abs/2302.12246


Test data LLM Result

FEW-SHOT BIASES

Training data

Majority label bias exists if distribution of labels
among the examples is unbalanced; 
Recency bias refers to the tendency where the
model may repeat the label at the end; 
Common token bias indicates that LLM tends to
produce common tokens more often than rare
tokens. 

Over-sampling

Data shuffling

Paraphrasing

In classic ML 



Test data LLM ResultInstruction

INSTRUCTION PROMPT



Test data LLM ResultInstruction

INSTRUCTION PROMPT

Explicitly telling model what to do, instead of showing a
set of demostrations (i.e. few-shot) and let model
immitate.

Training data

Instruction Training data Test data LLM ResultInstruction Training data

Instruction few-shot prompting

Few-shot instruction prompting



INSTRUCTION-FOLLLOWING MODELS
Instruction-following is not for granted. Think about:

An embedding model where “question:” and “answer:”
prefix give different embeddings for the same sentence
A reranker to “find most unrelated articles of ...”

Instructed LM finetunes a pretrained model with high-quality
tuples of (task instruction, input, ground truth output) to
make LM better understand user intention and follow
instruction. 

RLHF (Reinforcement Learning from Human Feedback) is a
common method to do so. The benefit of instruction
following style fine-tuning improves the model to be more
aligned with human intention and greatly reduces the cost
of communication.

https://github.com/allenai/natural-instructions


CHAIN-OF-THOUGHT (COT)



CHAIN-OF-THOUGHT (COT)

+”Let's think step by step”
+”Let's work this out it
a step by step to be
sure we have the right
answer”

Test data

Zero-shot CoT

LLM Result

Training data Rationale Test data

Few-shot CoT

LLM ResultTraining data Rationale

manually written/model-generated high-quality reasoning chains.



Training data Rationale Test data LLM ResultTraining data Rationale

programming language statements

PROGRAM-OF-THOUGHT (POT)
Few-shot PoT

Runnable code



Training data Rationale Test data LLM ResultTraining data Evidence

RETRIEVER

Web search

Pre-indexed on-prem dataBigger LM
“you are a
search
engine...”



READER

https://example.com https://r.jina.ai/https://example.com      LLM-friendly text

/Reader

Convert any URL to an LLM-friendly input with a simple prefix https://r.jina.ai/



READER



ALL BASIC MODULES

Test data LLM Result

Test data LLM ResultTraining data

Test data LLM ResultInstruction Training data

Training
data Rationale Test data LLM ResultTraining data Rationale

Training
data Rationale Test data LLM ResultTraining data Evidence

Zero-shot

Few-shot

Instruction 
few-shot

Chain of
Thought

Retrieval

Prompt “Parameter” of the prompt



ALL BASIC MODULES

Test data LLM Result

Test data LLM ResultTraining data

Test data LLM ResultInstruction Training data

Training
data Rationale Test data LLM ResultTraining data Rationale

Training
data Rationale Test data LLM ResultTraining data Evidence

Zero-shot

Few-shot

Instruction 
few-shot

Chain of
Thought

Retrieval

Prompt “Parameter” of the prompt



Test data LLM Result

Test data LLM ResultTraining data

Test data LLM ResultInstruction Training data

Training
data Rationale Test data LLM ResultTraining data Rationale

Training
data Rationale Test data LLM ResultTraining data Evidence

Prompt “Parameter” of the promptALL BASIC MODULES

Zero-shot

Few-shot

Instruction 
few-shot

Chain of
Thought

Retrieval

DSPy
DSPy is a framework for
algorithmically optimizing LM
prompts and weights, especially
when LMs are used one or more
times within a pipeline.



@JinaAI_jina.ai

What is DSPy

hello@jina.ai

DSPy:
Not Your Average Prompt Engineering



DSPY
Declarative Self-improving Language
Programs, pythonically.

DSPy is a framework for algorithmically
optimizing prompts and LM weights,
especially in a prompt pipeline.

However, it is hard to learn. 
"Yeah man, I have been seeing DSPy
everywhere but haven't found time to
check it out yet" - almost everyone I
talk to about the project.



UNDERSTANDING DSPY

DSPy closes the loop of prompt engineering;
DSPy separates the logic (what) from textual
representation (how).



DSPy closes the loop of prompt engineering;

Transforming prompt engineering from what is often a manual, handcrafted
process into a structured, well-defined machine learning workflow: i.e. preparing
datasets, defining the model, training, evaluating, and testing. In my opinion, this is
the most revolutionary aspect of DSPy.

UNDERSTANDING DSPY



DSPy

Cheesy, anthropomorphic:
“My grandma is dying”
“I will tip you $50 if you can get it right”
“But ChatGPT can do it”

A lot of tricks, requiring heavy experimentation and heuristics.
Results can not be universally applied to all LLMs/VLMs, or even
to the different versions of the same LLMs (gpt3->3.5->4)

UNDERSTANDING DSPY



UNDERSTANDING DSPY
DSPy separates the logic (what) from textual representation (how).

Prompt LLM Result

dspy.Module String rep. LLM Result

“This is important to me, I will lose
my job if I can’t get the sentiment
classification correct ...”

‘document->sentiment’

“... get the sentiment
classification correct ...
important ... lose my job ...”

dspy.Signature

Predict
ChainOfThought
ReAct
ProgramOfThought



Optimized String LLM ResultTraining data

Evaluation data

Metric

dspy.Module

dspy.Signature
dspy.ChainOfThought
(‘document->sentiment’)

DSPy.optimizer

DSPY.OPTIMIZER.COMPILE

User-defined



gpt3.5-turbo ResultTraining data

Evaluation data

Metric

dspy.Module

dspy.Signature
dspy.ChainOfThought
(‘document->sentiment’)

Compiled String 1

DSPy.optimizer

DSPY.OPTIMIZER.COMPILE



gpt3.5-turbo ResultTraining data

Evaluation data

Metric

dspy.Module

dspy.Signature
dspy.ChainOfThought
(‘document->sentiment’)

Optimized String 1

DSPy..compile

DSPY.OPTIMIZER

gpt3.5-turboOptimized String 1

DSPy..compile

gpt3.5-turboOptimized String 1

DSPy..compile

gpt3.5-turboOptimized String 1

DSPy..compile

gpt3.5-turboOptimized String 1

DSPy..compile

gpt3.5-turboOptimized String 1

DSPy..compile

gpt3.5-turboOptimized String 1

DSPy..compile

gpt3.5-turboOptimized String 1

DSPy..compile

llama-7bCompiled String 2

DSPy.optimizer



ALL BASIC MODULES

Test data LLM Result

Test data LLM ResultTraining data

Test data LLM ResultInstruction Training data

Training
data Rationale Test data LLM ResultTraining data Rationale

Training
data Rationale Test data LLM ResultTraining data Evidence

Zero-shot

Few-shot

Instruction 
few-shot

Chain of
Thought

Retrieval

Prompt “Parameter” of the prompt



WHAT EXACTLY DSPY.COMPILE OPTIMIZE

The compile function acts at the heart of this optimizer, akin to calling
optimizer.optimize(). Think of it as the DSPy equivalent of training. This
compile() process aims to tune:

the few-shot demonstrations
the instructions
the LLM weights

You can imagine DSPy as a toolbox of discrete optimization methods.



@JinaAI_jina.ai

Demo

hello@jina.ai

DSPy:
Not Your Average Prompt Engineering


